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Synopsis 

The connection between intrinsic viscosity and number-average and weight-average molecular 
weight has been revealed by calculations from distribution curves. Log-normal distributions, and 
moderate variations thereon, were chosen as typical for polystyrene and other thermoplastics. In- 
trinsic viscosity and number-average molecular weight are unlikely to be related because of the highly 
disturbing effect of small variations in molecular .weight distribution. Conversely, intrinsic viscosity 
is a good practical measure of weight-average molecular weight up to a ratio of 10 for weight-to- 
number average. 

INTRODUCTION 

The relation between intrinsic viscosity [a] and molecular weight M was first 
expressed by Staudinger as 

[a1 = KM (1) 

[a] = KMa (2) 

where K is a constant. Later, the equation was modified to the form 

where a is a constant with a value that is often about 0.7 in a good solvent. This 
is usually called the Mark-Houwink equation and sometimes the Mark-Hou- 
wink-Sakurada equation. 

When this equation is applied, a strong distinction is usually made between 
fractions and whole resins. For narrow fractions the ratio of weight-average to 
number-average molecular weight, MJM,, approaches the monodisperse ideal 
of 1.0. A plot of molecular weight, determined by light scattering etc., versus 
intrinsic viscosity is linear on logarithmic coordinates. From the plot, K and 
a can be readily determined. Conversely, for the whole resin M,/M, may be 
2.0 or considerably higher. The values of K and a are usually considered to be 
no longer strictly valid, and intrinsic viscosity then expresses a vague “viscosity 
average” molecular weight, one that lies between M ,  and M,. 

The second restriction on this equation is that it is valid only for linear poly- 
mers with short side chains. If long-chain branching (LCB) is present, as in some 
low-density polyethylenes, the relationship becomes invalid. For such a poly- 
ethylene fractionated in this laboratory, our log-log plot of molecular weight by 
light scattering versus intrinsic viscosity had a pronounced curvature. The 
points for the fractions at  the low end were nearly linear; here LCB was minimal. 
For higher fractions, LCB was more prominent and molecular weight rose rapidly 
in comparison with intrinsic viscosity. A t  the highest intrinsic viscosity of 2.8, 
the linear extrapolation of the points at  the low end suggested a molecular weight 
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of about 200,000. The actual value was over 3 million. The converse of this 
situation is incorporated in the well-known Billmeyer estimate for LCB-in 
terms of the ratio of the intrinsic viscosity expected for a similar linear polymer 
with no LCB to the actual intrinsic viscosity. Because of these complications, 
polymers with LCB are excluded from the following treatment. 

The vague domain of the polydisperse resin is the subject of this article. 
Looking for useful approximations we examine polydisperse resins ranging widely 
in width of molecular weight distribution, M,lM, being varied from 2 to 15. In 
this range can intrinsic viscosity be an approximate measure of either M ,  or 
M,? 

EXPERIMENTAL 

The method proceeds by calculation. A reasonable distribution of molecular 
weight (and intrinsic viscosity) is assumed. From the distribution we calculate 

To illustrate, consider the distribution curve of Figure 1 for resin A. It is 
concave upward in logarithmic normal coordinates, with intrinsic viscosity 
varying from 2.6 at  99.5% cumulative wt % down to 0.052 at 0.5%. To determine 
the corresponding molecular weight we assume that the resin is polystyrene with 
a Mark-Houwink relation? 

(3) 
determined for narrow fractions. Molecular weight M in eq. (3) was measured 
by light scattering and was actually M,, though presumably it was within a few 
percent of M,. Intrinsic viscosity was run in tetrahydrofuran at  23OC. For 
= 0.052 the molecular weight can be calculated as 5800. 

Mw, Mn, and [vI- 

[v ]  = 6.82 X 10-3M0.77 

0.1 0.3 1 3 10 

INTRINSIC VISCOSITY 
Fig. 1. Distribution curve for A. 
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The resin of Figure 1 was divided into 16 fractions with center points listed 
in Table I. For the whole resin intrinsic viscosity was calculated from the simple 
additive rule: 

[711 = Wd7711 + w2[712 + - * 

where [71] 1 is the intrinsic viscosity of fraction 1 of weight fraction w1, etc. The 
summation of Table I yields for the whole resin an intrinsic viscosity of 0.812. 

Similarly, molecular weights were calculated from the classical relations 

M , = w ~ M ~ + w ~ M ~ + * - -  

l/Mn = wl/M1+ ~ 2 / M 2  + - - - 
In summary (Table I), the resin in Figure 1 has the following calculated 

values: 

[q] = 0.812 

M ,  = 210,500 

M ,  = 85,000 

M,/M, = 2.48 

These are typical for a commercial polystyrene or the matrix of an impact 
polystyrene. 

In the first calculations, we divided the resin into 27 pieces but found that with 
16 coarser cuts, as in Table I, the calculated results changed less than 1%. In 
the middle of the distribution, where intrinsic viscosity is changing slowly, fine 
cuts are not needed; a 10% cut is sufficient, for example, between 58 and 68% 

TABLE I 
Calculation of Intrinsic Viscosity and Molecular Weightsa 

9a 
Center 
point Wi [SlL 

0.5 0.01 0.052 
1.5 0.01 0.091 
3 0.02 0.132 
6 0.04 0.19 

13 0.10 0.28 
23 0.10 0.40 
33 0.10 0.50 
43 0.10 0.62 
53 0.10 0.74 
63 0.10 0.88 
73 0.10 1.06 
83 0.10 1.30 
90 0.04 1.56 
94 0.04 1.75 
97 0.02 2.04 
99 0.02 2.40 

Wi h l i  
- 

0.001 
0.003 
0,008 
0.028 
0.040 
0.050 
0.062 
0.074 
0.088 
0.106 
0.130 
0.062 
0.071 
0.041 
0.048 
0.812 
- 

Mi Wi Mi 105 WJM~ 

5,800 -100 0.172 
11,500 -100 0.087 
19,000 400 0.105 
30,000 1,200 0.133 
50,000 5,000 0.200 
79,000 7,900 0.127 

106,000 10,600 0.094 
140,000 14,000 0.071 
175,000 17,500 0.057 
2 19,000 21,900 0.045 
278,000 27,800 0.036 
360,000 36,000 0.028 
455,000 18,200 0.009 
530,000 21,200 0.007 
640,000 12,800 0.003 
790,000 15,800 0.003 

210.500 1.177 
- 

a For whole resin: [q] = 0.812; M, = 210,500, l/Mn = 1.177/105 and M, = 85,000; M,/M, = 2.48. 



1438 QUACKENBOS 

centered at 63%. Fine cuts are necessary only at  the sensitive ends of the dis- 
tribution. For the fraction centered at  1.5%, for example, the fineness of the cut 
may be judged from a calculation that M,/Mn is 1.02, the fraction being further 
subdivided into 10 pieces to establish this ratio. 

Similar calculations were made for two distributions resembling those of Figure 
1 but having a parallel displacement. In one distribution the intrinsic viscosity 
a t  any cumulative percent was 1.5 times that of the original; in the other it was 
0.5 times. For such parallel displacement a total recalculation is not necessary 
because it can be shown that for the “1.5 resin” the values for the original are 
multiplied as follows: 

intrinsic viscosity = 1.5 

M,,M, = 1.5(lIu) or 1.693 

where a is the exponent in eq. (2) and is 0.77 (eq. 3). The three results of Table 
I1 were obtained in this way. 

RESULTS 

Four more distributions shown in Figure 2 were treated in the same way, with 
results summarized in Table 111. Three types are covered in terms of the log 
normal distribution pattern-concave, linear, and convex. Note the spread of 
M J M ,  from 2 to 15. 

Shape Variation 

The intrinsic viscosities and the molecular weights from Table I11 are presented 
on a log-log plot in Figure 3 along with the Mark-Houwink line (M-H) as a ref- 
erence. 

The principal features of Figure 3 are the following: 
(1) For a given family of constant shape and constant M,/Mn, like A, for ex- 

ample, both molecular weights are linear in intrinsic viscosity and the line has 
the same slope as the M-H line for narrow fractions. 

(2) The lines for M ,  lie to the right of the reference line, meaning that the 
value for M ,  is higher for a whole resin than expected from the M-H line. Yet 
the displacement is not excessive. At  intrinsic viscosity = 1.0 the M-H equation 
gives a value of 260,000 for M,, while the worst line passes through 330,000, a 
shift of about 30%. Thus for the whole resins not exceeding a moderate breadth 
of distribution, the reference M-H equation allows a good approximate prediction 

TABLE I1 
Concave Distributions of the TvDe of Figure 1 

[?I for 
whole resin Mrl a Mwa (Mw IMn 1 

0.812 85.0 210.5 2.48 
1.218 143.0 354.2 2.48 
0.406 34.6 85.6 2.48 

a In thousands. 
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Fig. 2. Distribution curves for B, C, D, and E. 

of M ,  from intrinsic viscosity, the answer being low. The error tends to increase 
as M,IM, rises but depends also on the shape of the MWD curve. 

(3) The lines for Mn lie to the left, yielding values at  a given intrinsic viscosity 
lower than would be predicted from the reference equation. The degree of left 
displacement depends principally on M,/M, and may be almost independent 
of MWD contour. The shift in M ,  can be exceptionally large. A t  intrinsic 
viscosity = 1.0 the M ,  can be as low as 20,000, compared to 260,000 for the ref- 
erence line. 

TABLE I11 
Summarv of Calculated Results 

[sl for 
Curve typea whole resin Mn M W b  (Mw IMn ) 
B, Convex 0.797 106.0 214.1 2.02 

1.195 178.8 361.2 2.02 
0.398 43.1 87.0 2.02 

C, Linear 0.812 37.8 235.8 6.24 
1.218 63.8 397.8 6.24 
0.406 15.4 95.9 6.24 

D, Linear 1.154 38.8 394.8 10.2 
0.770 23.0 234.0 10.2 
0.385 9.3 95.1 10.2 

E, Concave 1.49 33.0 511.0 15.5 
0.99 19.6 304.0 15.5 
0.50 8.0 124.0 15.5 

a Shape of curve on a log-normal distribution plot. 
In thousands. 
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Fig. 3. Relationships between intrinsic viscosity and molecular weights. Number on line denotes 
M w / M n .  

Comparison with Kurata et al. 

Of particular interest is an analysis by Kurata et a1.2 for "log normal distri- 
butions," those resembling our types C and D. By combining the previous 
equations for intrinsic viscosity and average molecular weights with an expression 
for a log-normal distribution, they solved the problem with mathematical rigor. 
Where there is an overlap in conclusions and implications, our findings and theirs 
agree that (1) if M,/M, remains constant, both log M ,  and log ?!ln are linear 
in log intrinsic viscosity with a slope equal to that of the M-H equation and (2) 
if M,/M, does not remain constant, the disturbance for M ,  is much less than 
that for M,. 

They expressed their results as 
[sI = Kn (Mn)" (4) 

[771 = K,(Mw)" (5) 

where M ,  for the whole resin is calculated using a different constant, K,, from 
that ( K )  in the M-H equation. A similar notation was used for M,. Their neat 
treatment showed that 

K,/K = (Mw/Mn)0.5a(a+1) (6) 

(7) K,  /K = ( Mw/Mn)O. 5a(a - ') 
For a = 0.77, as here, we then have 

K,/K = (M,/M,)o.681 

K,/K = (M,/M,)-o~oa8 

The variation of these two K ratios with M,/Mn is given as two lines in Figure 
4. The points represent results for our five families, A-E. Points and lines agree 
well for our two log-normal distributions C and D. The divergence for the other 
three points indicates some effect of MWD shape. 

Actually, Kurata et al. applied their analysis in a limited way. They were 
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Fig. 4. Correction factors. Lines are for a log-normal distribution calculated from the equations 
of Kurata et al. Points are for resins A-E. 

concerned only with the effect of overly broad functions on the purity of deter- 
mination of K and a in the Mark-Houwink equation. 

Practical Applications to Thermoplastics 

Figure 5 is a plot of intrinsic viscosity versus M ,  for three of the distributions 
in Table 111. The relationship is reasonably regular, with the points lying within 
f10% of the best line. Accordingly, intrinsic viscosity is a valid indicator of M ,  
for a fairly wide range of distributions. 

The practical implications that follow are (1) for a new or experimental family 
of linear thermoplastics intrinsic viscosity can be taken as an index of M,, even 
if individuals vary considerably in their width of molecular weight distribution; 
and (2) for a more established resin it seems unnecessary to go to the trouble of 
isolating fractions for determining the M-H relationship. A determination of 
M,, and M ,  for, say, three individuals will give a “best line” from which intrinsic 
viscosity alone can be used to calculate M ,  for other individuals. 

0.i 
1 6 ~  lo5 106 

M w  

Fig. 5. Intrinsic viscosity vs. M, for log-normal distributions: (0 )  A; (A) C; (m) D. 
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While many thermoplastics fit in this framework, polymers with long-chain 
branching are excluded because of their complicating effect on intrinsic vis- 
cosity. 

Although particular values of K and a have been used, the examples have 
general application. Variations of K have no effect, and only a minor influence 
is exerted as the value of a moves in the expected range from 0.7 to 0.8. 
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